skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cimpoiasu, Mihai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mauro Guglielmin (Ed.)
    ABSTRACT Accelerated climate warming is causing significant reductions in the volume of Arctic glaciers, such that previously ice‐capped bare ground is uncovered, harboring soil development. Monitoring the thermal and hydrologic characteristics of soils, which strongly affect microbial activity, is important to understand the evolution of emerging terrestrial landscapes. We instrumented two sites on the forefield of a retreating Svalbard glacier, representing sediment ages of approximately 5 and 60 years since exposure. Our instrumentation included an ERT array complemented by adjacent point sensor measurements of subsurface temperature and water content. Sediments were sampled at each location and at two more additional sites (120 and 2000 years old) along a chronosequence aligned with the direction of glacial retreat. Analysis suggests older sediments have a lower bulk density and contain fewer large minerals, which we interpret to be indicative of sediment reworking over time. Two months of monitoring data recorded during summer 2021 indicate that the 60‐year‐old sediments are stratified showing more spatially consistent changes in electrical resistivity, whereas the younger sediments show a more irregular structure, with consequences on heat and moisture conductibility. Furthermore, our sensors reveal that young sediments have a higher moisture content, but a lower moisture content variability. 
    more » « less
  2. ### Overview This data release includes surface nuclear magnetic resonance (sNMR) data collected as part of the SUN-SPEARS project. The project is funded by the National Science Foundation (Award number 2015329) and is concerned with studying soil evolution in high Arctic environments post glacial retreat. Within SUN-SPEARS, data are collected on a chronosequence from very recently deglaciated to older locations which have been exposed for decades to centuries. In this data release, sNMR data from two sites are included: site 1 which was collected approximately 15 meters (m) from the snout of the glacier, and site 2 which was located approximately 1000 m from the snout of the glacier, Global Positioning System (GPS) coordinates are included for more precise locations. ### Access Data files can be accessed via: [https://arcticdata.io/data/10.18739/A23X83N25](https://arcticdata.io/data/10.18739/A23X83N25) 
    more » « less